281 research outputs found

    Shell-model test of the rotational-model relation between static quadrupole moments Q(2^+_1), B(E2)'s, and orbital M1 transitions

    Full text link
    In this work, we examine critically the relation between orbital magnetic dipole (scissors mode) strength and quadrupole deformation properties. Assuming a simple K=0 ground state band in an even-even nucleus, the quantities Q(2^+_1) (i.e., the static quadrupole moment) and B(E2)_{0_1 \to 2_1} both are described by a single parameter--the intrinsic quadrupole moment Q_0. In the shell model, we can operationally define Q_0(Static) and Q_0(BE2) and see if they are the same. Following a brief excursion to the sd shell, we perform calculations in the fp shell. The nuclei we consider ({44,46,48}Ti and {48,50}Cr) are far from being perfect rotors, but we find that the calculated ratio Q_0(Static)/Q_0(BE2) is in many cases surprisingly close to one. We also discuss the collectivity of orbital magnetic dipole transitions. We find that the large orbital B(M1) strength in {44}Ti relative to {46}Ti and {48}Ti cannot be explained by simple deformation arguments.Comment: 12 pages, RevTeX4. Sections II (Quadrupole properties in the sd-shell) and V (Random interaction studies) added. Minor changes throughout the text and 48Cr added to present Table IV, as well as results for the lowest 100 state

    Real Time Global Tests of the ALICE High Level Trigger Data Transport Framework

    Full text link
    The High Level Trigger (HLT) system of the ALICE experiment is an online event filter and trigger system designed for input bandwidths of up to 25 GB/s at event rates of up to 1 kHz. The system is designed as a scalable PC cluster, implementing several hundred nodes. The transport of data in the system is handled by an object-oriented data flow framework operating on the basis of the publisher-subscriber principle, being designed fully pipelined with lowest processing overhead and communication latency in the cluster. In this paper, we report the latest measurements where this framework has been operated on five different sites over a global north-south link extending more than 10,000 km, processing a ``real-time'' data flow.Comment: 8 pages 4 figure

    Studies of the Giant Dipole Resonance in 27^{27}Al, 40^{40}Ca, 56^{56}Fe, 58^{58}Ni and 208^{208}Pb with high energy-resolution inelastic proton scattering under 0^\circ

    Full text link
    A survey of the fine structure of the Isovector Giant Dipole Resonance (IVGDR) was performed, using the recently commissioned zero-degree facility of the K600 magnetic spectrometer at iThemba LABS. Inelastic proton scattering at an incident energy of 200 MeV was measured on 27^{27}Al, 40^{40}Ca, 56^{56}Fe, 58^{58}Ni and 208^{208}Pb. A high energy resolution (ΔE\rm{\Delta}\it{E} \simeq 40 keV FWHM) could be achieved after utilising faint-beam and dispersion-matching techniques. Considerable fine structure is observed in the energy region of the IVGDR and characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The comparison with Quasiparticle-Phonon Model (QPM) calculations provides insight into the relevance of different giant resonance decay mechanisms. Photoabsorption cross sections derived from the data assuming dominance of relativistic Coulomb excitation are in fair agreement with previous work using real photons.Comment: 15 pages, 15 figure

    No evidence of an 11.16 MeV 2+ state in 12C

    Full text link
    An experiment using the 11B(3He,d)12C reaction was performed at iThemba LABS at an incident energy of 44 MeV and analyzed with a high energy-resolution magnetic spectrometer, to re-investigate states in 12C published in 1971. The original investigation reported the existence of an 11.16 MeV state in 12C that displays a 2+ nature. In the present experiment data were acquired at laboratory angles of 25-, 30- and 35- degrees, to be as close to the c.m. angles of the original measurements where the clearest signature of such a state was observed. These new low background measurements revealed no evidence of the previously reported state at 11.16 MeV in 12C

    Wavelet signatures of KK-splitting of the Isoscalar Giant Quadrupole Resonance in deformed nuclei from high-resolution (p,p') scattering off 146,148,150^{146,148,150}Nd

    Get PDF
    The phenomenon of fine structure of the Isoscalar Giant Quadrupole Resonance (ISGQR) has been studied with high energy-resolution proton inelastic scattering at iThemba LABS in the chain of stable even-mass Nd isotopes covering the transition from spherical to deformed ground states. A wavelet analysis of the background-subtracted spectra in the deformed 146,148,150Nd isotopes reveals characteristic scales in correspondence with scales obtained from a Skyrme RPA calculation using the SVmas10 parameterization. A semblance analysis shows that these scales arise from the energy shift between the main fragments of the K = 0, 1 and K = 2 components.Comment: 7 pages, 6 figure

    Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?

    Full text link
    The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40Ca has been investigated in high energy-resolution experiments using proton inelastic scattering at E_p = 200 MeV. Fine structure is observed in the region of the ISGQR and its characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The experimental scales are well described by Random Phase Approximation (RPA) and second-RPA calculations with an effective interaction derived from a realistic nucleon-nucleon interaction by the Unitary Correlation Operator Method (UCOM). In these results characteristic scales are already present at the mean-field level pointing to their origination in Landau damping, in contrast to the findings in heavier nuclei and also to SRPA calculations for 40Ca based on phenomenological effective interactions, where fine structure is explained by the coupling to two-particle two-hole (2p-2h) states.Comment: Phys. Lett. B, in pres

    Electric dipole polarizability of 40^{40}Ca

    Full text link
    The electric dipole strength distribution in 40^{40}Ca between 5 and 25 MeV has been determined at RCNP, Osaka, from proton inelastic scattering experiments at very forward angles. Combined with total photoabsorption data at higher excitation energy, this enables an extraction of the electric dipole polarizability αD\alpha_\mathrm{D}(40^{40}Ca) = 1.92(17) fm3^3. Together with the measured αD\alpha_{\rm D} in 48^{48}Ca, it provides a stringent test of modern theoretical approaches, including coupled cluster calculations with chiral effective field theory interactions and state-of-the art energy density functionals. The emerging picture is that for this medium-mass region dipole polarizabilities are well described theoretically, with important constraints for the neutron skin in 48^{48}Ca and related equation of state quantities.Comment: 6 pages, 3 figure
    corecore